Xerophyta spp.

May 11, 2017 Cheeseman 0

Two species of Xerophyta – X. viscosa and X. humilis – have been studied at the molecular level. Both are native to southern Africa. Like other monocots, Xerophyta spp. lose their chlorophyll during desiccation. Seedlings also lose desiccation tolerance briefly upon germination and recover it gradually during seedling development. X. viscosa, the only species with a sequenced genome, is a chasmophyte. It is also self-incompatible and thus shows a high degree of heterozygosity. In contrast, X. humilis, for which transcriptome resources are available, is a non-chasmophyte.

No Picture

Arabidopsis lyrata

March 28, 2017 Cheeseman 0

The eXtreme plant bona fides of Arabidopsis lyrata stem from its preference for sandy, gravelly, rocky or chasmophytic “soil”. At the molecular level, its value has been greatest for its contribution to understanding of mechanisms of mutation, selection and genome-size transformations in plants.

No Picture

Rhizophora spp.

March 28, 2017 Cheeseman 0

The genus Rhizophora contains more species of mangrove than any other. Their tangled prop root systems – illustrated in the header photo – are the […]

Thellungiella parvula in situ

Schrenkiella parvula

March 28, 2017 atc 0

Schrenkiella parvula – a 7 chromosome member of the Brassicaceae – has an eXtreme ability, in the natural world, to function in the hypersaline conditions surrounding Lake Tuz in central Anatolia, Turkey.  It is also notable for its tolerance of high levels of other cations, especially Li+ and Mg2+ and of Boron. These extreme adaptations were central to the initial decision to sequence the genome of this species.